The Therapeutic Effect of Ge-Gen Decoction on a Rat Model of Primary Dysmenorrhea: Label-Free Quantitative Proteomics and Bioinformatic Analyses

Author:

Xie Yazhen1ORCID,Qian Jianqiang1ORCID,Lu Qibin2ORCID

Affiliation:

1. Taicang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang 215400, China

2. Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

Abstract

Ge-Gen decoction (GGD) is widely used for the treatment of primary dysmenorrhea (PD) in China. However, the mechanisms that underlie this effect are unclear. We investigated the protective mechanism of GGD in a rat model of PD using label-free quantitative proteomics. The model was established by the administration of estradiol benzoate and oxytocin. Thirty rats were divided into three groups (ten rats/group): a control group (normal rats), a model group (PD rats), and a treatment group (PD rats treated with GGD). The serum levels of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were measured by ELISA. Nanohigh-performance liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS) was used to identify differentially expressed proteins (DEPs), and bioinformatics was used to investigate the protein function. Proteomic data were validated by western blot analysis. Oxytocin-induced writhing responses and abnormal serum levels of PGE2 and PGF2α were reversed following the administration of GGD. A total of 379 DEPs were identified; 276 were identified between the control group and the model group, 144 were identified between the model group and the treatment group, and 41 were identified as DEPs that were common to all groups. Bioinformatics revealed that the DEPs between the control group and the model group were mainly associated with cellular component biogenesis and binding processes. The DEPs between the model group and the treatment group were mainly involved in the protein binding and metabolic process. The expression levels of HSP90AB1 and the phosphorylation levels of ERK, JNK, and P-p38 in the uteri of rats in the three groups were consistent with the proteomic findings; MAP kinases (ERK, JNK, and p38) are known to be involved in the production of inflammatory cytokines and oxytocin signaling while HSP90AB1 is known to be associated with estrogen signaling. Collectively, these data indicate that GGD may exert its protective function on PD by regulating the inflammatory response and signaling pathways associated with oxytocin and estrogen.

Funder

Project of Taicang Science and Technology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3