Bridge Displacement Measurement Using the GAN-Network-Based Spot Removal Algorithm and the SR-Based Coarse-to-Fine Target Location Method

Author:

Yu Shanshan1ORCID,Zhang Jian23ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. School of Civil Engineering, Southeast University, Nanjing 210096, China

3. Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China

Abstract

Image-based bridge displacement measurement still suffers from certain limitations in outdoor implementation. Each of these limitations was addressed in this study. (1) The laser spot is difficult to identify visually during the object distance (OD: mm) measurement using a laser rangefinder, which makes the scale factor (SF: mm/pixel) calibration tricky. To overcome this issue, a stereovision-based full-field OD measurement method using only one camera was suggested. (2) Sunlight reflected by the water surface during the measurement causes light spot interference on the captured images, which is not conducive to target tracking. A network for light spot removal based on a generative adversarial network (GAN) is designed. To obtain a better image restoration effect, the edge prior was novelly designed as the input of a shadow mask-based semantic-aware network (S2Net). (3) A coarse-to-fine matching strategy combined with image sparse representation (SR) was developed to balance the subpixel location precision and efficiency. The effectiveness of the above innovations was verified through algorithm evaluation. Finally, the integrated method was applied to the vibration response monitoring of a concrete bridge impacted by the traffic load. The image-based measurement results show good agreement with those of the long-gauge fiber Bragg grating sensors and lower noise than that of the method before improvement.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3