Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition

Author:

Munoz Roberto12ORCID,Olivares Rodrigo12ORCID,Taramasco Carla1ORCID,Villarroel Rodolfo2ORCID,Soto Ricardo2ORCID,Barcelos Thiago S.3ORCID,Merino Erick1ORCID,Alonso-Sánchez María Francisca4ORCID

Affiliation:

1. Escuela de Ingeniería Civil Informática, Universidad de Valparaíso, Valparaíso, Chile

2. Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

3. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil

4. Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile

Abstract

Emotions are a critical aspect of human behavior. One widely used technique for research in emotion measurement is based on the use of EEG signals. In general terms, the first step of signal processing is the elimination of noise, which can be done in manual or automatic terms. The next step is determining the feature vector using, for example, entropy calculation and its variations to generate a classification model. It is possible to use this approach to classify theoretical models such as the Circumplex model. This model proposes that emotions are distributed in a two-dimensional circular space. However, methods to determine the feature vector are highly susceptible to noise that may exist in the signal. In this article, a new method to adjust the classifier is proposed using metaheuristics based on the black hole algorithm. The method is aimed at obtaining results similar to those obtained with manual noise elimination methods. In order to evaluate the proposed method, the MAHNOB HCI Tagging Database was used. Results show that using the black hole algorithm to optimize the feature vector of the Support Vector Machine we obtained an accuracy of 92.56% over 30 executions.

Funder

Pontificia Universidad Católica de Valparaíso

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3