Affiliation:
1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2. University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract
Cryocooler plays an essential role in the field of infrared remote sensing. Linear compressor, as the power component of the cryocooler, will directly affect the normal operation and performance of the detector if there is a fault. Therefore, the intelligent fault diagnosis of the linear compressor is of great significance. An intelligent fault diagnosis method based on time-frequency image and convolutional neural network is proposed to solve the problems of piston and cylinder friction, mass imbalance, and plate spring distortion in the linear compressor. Firstly, the wavelet transform time-frequency analysis method is used to generate the corresponding time-frequency image. Convolutional neural network (CNN) is used to automatically extract features of time-frequency images, so as to realize the classification of various fault modes. The results of simulation experiments show that the method can identify several fault modes of the linear compressor with 95% accuracy.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献