The Application of Artificial Intelligence Technology in the Asset Management of Start-Ups in the Context of Deep Learning

Author:

Fu Qi1,Li Xiaotong2ORCID

Affiliation:

1. Department of International Finance, Shanghai Lixin University of Accounting and Finance, Shanghai 200000, China

2. Department of Finance and Business Economics, University of Macau, Macau 999078, China

Abstract

With the coninuous improvement and development of artificial intelligence (AI) technology, this technology has been used in the asset management of companies. To improve the asset management level of Chinese start-ups, firstly, back-propagation neural network (BPNN) has been studied in depth, and an evaluation system of the company’s asset quality has been established. Secondly, the BPNN is integrated with the evaluation indicators of asset quality, and an evaluation model of asset quality based on BPNN is constructed. Next, start-up A is taken as the experimental object; the evaluation score of the asset quality of A company is input into the model, which proves that there is still a certain gap between the asset management level of start-ups and mature companies. Finally, to find out the problems of the company’s asset quality, the traditional financial analysis method is used to carry out a specific microanalysis of the evaluation indicators of its asset quality. In view of the existing problems, suggestions are put forward for prudent investment, improve inventory operation efficiency, increase investment in R&D and innovation, improve the quality of sales outlets, and increase the proportion of high-quality intangible assets. The asset quality evaluation system for start-ups established here includes 19 evaluation indicators. The BPNN-based asset quality evaluation model selects 5 mature companies in the same industry as sample companies. The scores of the evaluation indicators of asset quality of the 5 sample companies in the past three years are normalized and input into the model. The model contains 19 nodes of the input layer, 39 nodes of the hidden layer, and 1 node of the output layer. The target error rate is 0.001, the learning rate is 0.1, the number of training times is 1000, and the training function is the trainlm function. This research has a certain reference for the application of AI technology in the asset management of start-ups.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3