Affiliation:
1. Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
2. Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
3. Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
4. West China School of Nursing, Sichuan University, Chengdu, China
5. Department of Microbiology, University of Balochistan, Quetta 87300, Balochistan, Pakistan
Abstract
Pathogens are always a threat to the livestock and domestic animals due to their exposure to the contaminated environments. The study was conducted to evaluation of the prevalence of Escherichia coli, Shigella spp., Salmonella spp., and S. aureus, in farm animals (cattle and buffalos). A total of 150 (n = 150) samples were collected from cattle and buffaloes, 60 samples from cows’ and buffalo’s teats milk, 30 of water samples, and 60 of fecal samples isolates from dairy farm animals, which may act as reservoir disseminating such pathogens. Farm hygiene, management, and milking procedure were listed through a questionnaire. The most common pathogens detected in this study was E. coli 88 (58%) and S. aureus 81 (54%), followed by Salmonella spp. 32 (21%), and Shigella spp. 44 (29%), respectively. During the antibiogram studies, the results revealed that the highest number of bacterial isolates showed resistance against ampicillin 50 (56.8%), followed by ciprofloxacin 23 (26.1%) and augmentin 22 (25%) of Escherichia coli and ampicillin 49 (60.4%), cefpodoxime 23 (28.3%), and augmentin 20 (24.6%) of S. aureus. In the case of Salmonella spp., the highest resistance was showed by amoxicillin 16 (50%). In Shigella spp., the highest resistance was shown by ampicillin 16 (36.3%), followed by cefpodoxime and ceftazidime 10 (22.7%). The high frequency of isolates in this investigation with multiple antibiotic resistance ranges from 15. MARI % value of S. aureus and E. coli 15 (12.5%), followed by Salmonella and Shigella spp. ranges from 12 (10%), suggesting the presence of various antibiotic-resistant bacteria as well as highly resistant bacteria. The mean ± SD zone areas for the greater resistance are for E. coli and S. aureus, already known to be multiresistant, followed by Salmonella spp. and Shigella spp., when the zone areas are for the low resistance, and the findings determined that there was a little difference between S. aureus and E. coli.
Funder
China Agriculture Research System
Subject
Safety, Risk, Reliability and Quality,Food Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献