Fault Detection Method for Wi-Fi-Based Smart Home Devices

Author:

Cheng Kefei1,Xu Jiashun2ORCID,Zhang Liang1,Xu ChengXin1,Cui Xiaotong1

Affiliation:

1. School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing, China

2. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China

Abstract

At present, the dynamic nature and unstable network connections in the deployment environments of Wi-Fi-based smart home devices make them susceptible to component damage, crashes, network disconnections, etc. To solve these problems, researchers have used various fault detection methods, such as alarming when monitored fault parameters exceed the preset values, model-based mathematical methods, device signal processing-based methods, and artificial intelligence-based methods. However, these methods require large numbers of fault parameters, the model are complex, and their fault detection accuracy is relatively poor. To more quickly and accurately detect faults in smart home devices and ensure the continuity of people’s daily work and lives, this paper analyzes both the Wi-Fi traffic characteristics of smart home devices and the complexity and difficulty of traditional fault detection methods and proposes a fault detection method based on TDD (Throughput and Delay Distribution). This method obtains throughput and data packet delay distribution by capturing Wi-Fi communication and sending test data. By dividing the throughput into heartbeat data and command information, we can calculate the real-time throughput and further calculate the similarity between the real-time throughput and the throughput in database. Also, the resulting delay distribution is compared with the probability distribution of delay in the database. When the throughput values are sufficiently similar and the delays are all in the normal range, the smart home secure devices are functioning properly. The experimental results show that the proposed TDD method can detect faults in household devices in real time and that it achieves high recall and good detection accuracy in Wi-Fi communication environment.

Funder

State Key Laboratory of Computer Architecture Research Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3