Dexterous Identification of Carcinoma through ColoRectalCADx with Dichotomous Fusion CNN and UNet Semantic Segmentation

Author:

Narasimha Raju Akella S.1ORCID,Jayavel Kayalvizhi1ORCID,Rajalakshmi Thulasi2ORCID

Affiliation:

1. Department of Networking and Communications, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

2. Department of Electronics and Communication Engineering, School of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

Abstract

Human colorectal disorders in the digestive tract are recognized by reference colonoscopy. The current system recognizes cancer through a three-stage system that utilizes two sets of colonoscopy data. However, identifying polyps by visualization has not been addressed. The proposed system is a five-stage system called ColoRectalCADx, which provides three publicly accessible datasets as input data for cancer detection. The three main datasets are CVC Clinic DB, Kvasir2, and Hyper Kvasir. After the image preprocessing stages, system experiments were performed with the seven prominent convolutional neural networks (CNNs) (end-to-end) and nine fusion CNN models to extract the spatial features. Afterwards, the end-to-end CNN and fusion features are executed. These features are derived from Discrete Wavelet Transform (DWT) and Vector Support Machine (SVM) classification, that was used to retrieve time and spatial frequency features. Experimentally, the results were obtained for five stages. For each of the three datasets, from stage 1 to stage 3, end-to-end CNN, DenseNet-201 obtained the best testing accuracy (98%, 87%, 84%), ((98%, 97%), (87%, 87%), (84%, 84%)), ((99.03%, 99%), (88.45%, 88%), (83.61%, 84%)). For each of the three datasets, from stage 2, CNN DaRD-22 fusion obtained the optimal test accuracy ((93%, 97%) (82%, 84%), (69%, 57%)). And for stage 4, ADaRDEV2-22 fusion achieved the best test accuracy ((95.73%, 94%), (81.20%, 81%), (72.56%, 58%)). For the input image segmentation datasets CVC Clinc-Seg, KvasirSeg, and Hyper Kvasir, malignant polyps were identified with the UNet CNN model. Here, the loss score datasets (CVC clinic DB was 0.7842, Kvasir2 was 0.6977, and Hyper Kvasir was 0.6910) were obtained.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3