Elucidation on Predominant Pathways Involved in the Differentiation and Mineralization of Odontoblast-Like Cells by Selective Blockade of Mitogen-Activated Protein Kinases

Author:

Tang Jia1ORCID,Saito Takashi2ORCID

Affiliation:

1. Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan

2. Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan

Abstract

Aim. To analyze the effect of three mitogen-activated protein kinase (MAPK) inhibitors, namely, SB202190 (p38 inhibitor), SP600125 (JNK inhibitor), and PD98059 (ERK inhibitor) in Dex-stimulated MDPC-23 cell differentiation and mineralization. Methods. Experiment was divided into five groups, control (cells without Dex and inhibitors treatment), Dex (cells with Dex treatment but without inhibitors), Dex + SB202190, Dex + SP600125, and Dex + PD98059. Cell differentiation was assessed by alkaline phosphatase (ALP) activity assay and real time RT-PCR. Cell mineralization was investigated by alizarin red staining. Results. Exposure to SB202190 (20 μM) significantly decreased the mineral deposition in Dex-treated cells as demonstrated by alizarin red staining. Treatment of SP600125 (20 μM) attenuated the mineralization as well, albeit at a lower degree as compared to SB202190 (20 μM). Similarly, SB202190 (20 μM) completely abrogated the ALP activity stimulated by Dex at six days in culture, while no changes were observed with regard to ALP activity in SP600125 (20 μM) and PD98059 (20 μM) treated cells. The upregulation of bone sialoprotein (BSP), ALP, and osteopontin (OPN) in Dex challenged cells was completely inhibited by SB202190. Conclusion. Blockade of p38-MAPK signaling pathway resulted in significant inhibition of ALP activity, mineralization, and downregulation of osteogenic markers. The data implicated that p38 signaling pathway plays a critical role in the regulation of MDPC-23 cells differentiation and mineralization.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3