Advective Heat Transport and the Salt Chimney Effect: A Numerical Analysis

Author:

Canova David P.1,Fischer Mark P.1,Jayne Richard S.2,Pollyea Ryan M.2ORCID

Affiliation:

1. Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USA

2. Department of Geosciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA

Abstract

We conducted numerical simulations of coupled fluid and heat transport in an offshore, buried salt diapir environment to determine the effects of advective heat transport and its relation to the so-called “salt chimney effect.” Model sets were designed to investigate (1) salt geometry, (2) depth-dependent permeability, (3) geologic heterogeneity, and (4) the relative influence of each of these factors. Results show that decreasing the dip of the diapir induces advective heat transfer up the side of the diapir, elevating temperatures in the basin. Depth-dependent permeability causes upwelling of warm waters in the basin, which we show to be more sensitive to basal heat flux than brine concentration. In these model scenarios, heat is advected up the side of the diapir in a narrower zone of upward-flowing warm water, while cool waters away from the diapir flank circulate deeper into the basin. The resulting fluid circulation pattern causes increased discharge at the diapir margin and fluid flow downward, above the crest of the diapir. Geologic heterogeneity decreases the overall effects of advective heat transfer. The presence of low permeability sealing horizons reduces the vertical extent of convection cells, and fluid flow is dominantly up the diapir flank. The combined effects of depth-dependent permeability coupled with geologic heterogeneity simulate several geologic phenomena that are reported in the literature. In this model scenario, conductive heat transfer dominates in the basal units, whereas advection of heat begins to affect the middle layers of the model and dominates the upper units. Convection cells split by sealing layers develop within the upper units. From our highly simplified models, we can predict that advective heat transport (i.e., thermal convection) likely dominates in the early phases of diapirism when sediments have not undergone significant compaction and retain high porosity and permeability. As the salt structures mature into more complex geometries, advection will diminish due to the increase in dip of the salt-sediment interface and the increased hydraulic heterogeneity due to complex stratigraphic architecture.

Funder

ExxonMobil Student Research

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3