Affiliation:
1. Industrial University of Ho Chi Minh City, Vietnam
2. Ho Chi Minh City University of Technology and Education, Vietnam
3. Middlesex University, UK
Abstract
Unmanned aerial vehicle (UAV) communication and non-orthogonal multiple access (NOMA) are two promising technologies for wireless 5G networks and beyond. The UAVs can be used as flying base stations to form line-of-sight communication links to the Internet of things devices (IDs) and to enhance the performance of usual terrestrial cellular networks. Moreover, the UAVs can also be deployed as flying relay nodes for forwarding data from a base station (BS) to the IDs. On the other hand, non-orthogonal resource sharing for many concurrent users is exploited in NOMA, thus improving spectrum efficiency (SE) and supporting massive connections. The NOMA combined with energy harvesting (EH) in an amplify-and-forward (AF) with cooperative UAV systems is researched. Specifically, the UAVs act as rotary-wing relays to forward data from the BSs to two IDs. This paper focuses on the analysis of outage probabilities (OPs), system throughput, and energy efficiency (EE) for two IDs. Besides, we also do the asymptotic analysis of OPs at high signal-to-noise ratios (SNRs). Furthermore, this paper also inspects the impacts of the UAV-based relaying on the OP, system throughput, and EE of the proposed NOMA scheme. The derived asymptotic expansions show that the suggested model can enhance user fairness and the analytical results match the simulation results.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献