A Lightweight Face Verification Based on Adaptive Cascade Network and Triplet Loss Function

Author:

Lin Jianhong12,Ye Chaoyang3,Liu Weinan4,Ren Siqi5ORCID,Wang Ye5,Ma Wenrui5,Xu Bin5,Ding Yifan2

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

2. Zhejiang Ponshine Information Technology Co., Ltd., Hangzhou 311100, China

3. National (Hangzhou) New-Type Internet Exchange, Hangzhou 310009, China

4. Business & Tourism Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China

5. School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

Abstract

In the past few years, with the continuous breakthrough of technology in various fields, artificial intelligence has been considered as a revolutionary technology. One of the most important and useful applications of artificial intelligence is face detection. The outbreak of COVID-19 has promoted the development of the noncontact identity authentication system. Face detection is also one of the key techniques in this kind of authentication system. However, the current real-time face detection is computationally expensive which hinders the application of face recognition. To address this issue, we propose a face verification framework based on adaptive cascade network and triplet loss. The framework is simple in network architecture and has light-weighted parameters. The training network is made of three stages with an adaptive cascade network and utilizes a novel image pyramid based on scales with different sizes. We train the face verification model and complete the verification within 0.15 second for processing one image which shows the computation efficiency of our proposed framework. In addition, the experimental results also show the competitive accuracy of our proposed framework which is around 98.6%. Using dynamic semihard triplet strategy for training, our network achieves a classification accuracy of 99.2% on the dataset of Labeled Faces in the Wild.

Funder

Research Project of Zhejiang Federation of Social Sciences

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3