Waveform Characteristics of Tunnel Blast Waves and a Wave-Blocking Method

Author:

Zhou Xianshun12ORCID,Zhang Xuemin12ORCID,Ren Tianhe3,Ou Xuefeng4ORCID,Xiong Wenchao12,Zhang Liming3,Zhang Lei3

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China

2. Key Laboratory of Heavy-haul Railway Engineering Structure, Ministry of Education, Central South University, Changsha, Hunan 410075, China

3. Guizhou Highway Engineering Group Co., Ltd., Guiyang 550000, China

4. School of Civil Engineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China

Abstract

The impact of blast wave air overpressure (AOp) may cause damage to nearby structures and significant noise pollution. In order to minimize the impact of the blast wave on the buildings around the tunnel, a new wave-blocking trolley (NWBT) was proposed to control the AOp during the construction of the Baitacun tunnel, as the nearby villages were located less than 100 m from the tunnel portal. In the study, the characteristics of the blast wave pressure profiles were studied by field measurements and numerical simulations and the Friedlander equation parameters were obtained. Second, the controlling effect and working mechanism of the NWBT were verified to be effective. The measured peak AOp was weakened from 2.49 kPa to 0.55 kPa with the operating NWBT, which meets the requirements of Chinese specifications. Furthermore, a numerical simulation for the impact process of the NWBT was established using the ANSYS/LS-DYNA software. Finally, it was found that a shorter distance from the NWBT to the source of the blast makes a better contribution to its wave-blocking effect. The waveform characteristics obtained in the study contribute to the design of tunnel surrounding structures; the application of the NWBT is a successful wave-blocking method for tunnels adjacent to environmentally sensitive areas.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3