Experimental Study on Quasi-Static Pressure of Slot Hydraulic Blasting

Author:

Liu Chengwei12ORCID,Xia Binwei12ORCID,Lu Yiyu12ORCID,Gao Yugang12ORCID

Affiliation:

1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

2. College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China

Abstract

Air is commonly used as the noncoupling borehole medium in directional slot blasting where the quasi-static pressure is small, the energy utilization rate of the explosive is low, and the breaking efficiency of the coal-rock mass is not high. This study investigates the effect of quasi-static pressure on crack propagation in closed-field blasting. Crack length propagation in the quasi-static pressure stage accounts for more than 60% of the total crack length. Water is therefore proposed as the noncoupling medium of the slotting borehole to increase the quasi-static pressure. A series of experiments was performed to investigate and compare quasi-static pressures generated using noncoupled water-medium blasting and noncoupled air-medium blasting. The experimental results show that the quasi-static pressure is 37–46 times larger in water-medium blasting than in the air-medium case. The experimental measurements show good agreement with theoretical analysis. The results show that the energy utilization rate of the explosives in the hydraulic slotting blasting is high with a notable energy storage effect, and that the fracturing range can be significantly increased. Additionally, fracture by directional blasting using this approach can be more controllable.

Funder

National Key Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3