SLAM of Mobile Robot for Wireless Communication Based on Improved Particle Filter

Author:

Zhu Daixian1ORCID,Wang Mingbo1,Su Mengyao1,Liu Shulin2,Guo Ping1

Affiliation:

1. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

The mobile robot is moved by receiving instructions through wireless communication, and the particle filter is used to simultaneous localization and mapping. Aiming at the problem of the degradation of particle filter weights and loss of particle diversity, which leads to the decrease of filter accuracy, this paper uses the plant cell swarm algorithm to optimize the particle filter. First of all, combining the characteristics of plant cells that affect the growth rate of cells when the auxin content changes due to light stimulation realizes the optimization of the particles after importance sampling, so that they are concentrated in the high-likelihood area, and the problem of particle weight degradation is solved. Secondly, in the process of optimizing particle distribution, the auxin content of each particle is different, which makes the optimization effect on each particle different, so it effectively solves the problem of particle diversity loss. Finally, a simulation experiment is carried out. During the experiment, the robot moves by receiving control commands through wireless communication. The experimental results show that the algorithm effectively solves the problem of particle weight degradation and particle diversity loss and improves the filtering accuracy. The improved algorithm is verified in the simultaneous localization and mapping of the robot, which effectively improves the robot’s performance at the same time positioning accuracy. Compared with the classic algorithm, the robot positioning accuracy is increased by 49.2%. Moreover, the operational stability of the algorithm has also been improved after the improvement.

Funder

Xi’an Beilin District Science and Technology plan project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference15 articles.

1. A hybrid algorithm based on particle filter and genetic algorithm for target tracking

2. A particle filter approach to estimating target location using Brownian bridges

3. FastSLAM: a factored solution to the Simultaneous localization and mapping problem with unknown data association;A. Stentz

4. FastSLAM algorithm of second-order central difference particle filter;D. Jiahui;Control Theory and Applications,2018

5. FastSLAM2.0 : an improved particle filtering algorithm for simultaneous localization and mapping that provably converges;M. Montemerlo

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3