“Wireline + Wireless” Networking Remote Monitoring Technology for Analysing the Unloading Deformation Characteristics of the Fractured Surrounding Rock Mass Induced by Underground Excavation

Author:

Hu Bin1,Sheng Jianlong1,Li Jing1ORCID,Pan Peng-Zhi2ORCID,Zhang Guangquan1,Ye Zuyang1

Affiliation:

1. School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China

Abstract

Collapse or large deformation of fractured surrounding rock mass occurs frequently in underground tunnelling and results in many casualties and extensive property damage. This paper proposed a new type of remote telemetry system for monitoring the mechanical responses of underground tunnels during unloading. This system adopted both wired and wireless networking schemes, including a signal collection and transmission subsystem, a management analysis subsystem, and a remote receiving subsystem, in the tunnels. The application of this new approach in a subway tunnel indicated that the complete unloading performance of a surrounding rock mass can be captured in real time and high frequency using this method, recording the deformation of the surrounding rock, the stress in the bolts, and the stress in the shotcrete between the surrounding rock and steel arch. The in situ experimental study also found that deformation of the fractured surrounding rock mass in the Dashizi Tunnel showed a step-like fluctuating growth pattern. Additionally, the mechanical response of the surrounding rock mass during unloading tended to stabilize when the opening face was approximately 35 m away from the monitoring section, providing new ways to optimize the excavation process and support measure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3