Development of a Three-Stage Hybrid Model by Utilizing a Two-Stage Signal Decomposition Methodology and Machine Learning Approach to Predict Monthly Runoff at Swat River Basin, Pakistan

Author:

Sibtain Muhammad1,Li Xianshan1,Nabi Ghulam2,Azam Muhammad Imran3ORCID,Bashir Hassan4

Affiliation:

1. Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 44302, China

2. Center of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore 54000, Pakistan

3. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 44302, China

4. China College of Environmental Science and Engineering, Hunan University, Changsha 410082, China

Abstract

Precise and reliable hydrological runoff prediction plays a significant role in the optimal management of hydropower resources. Nevertheless, the hydrological runoff practically possesses a nonlinear dynamics, and constructing appropriate runoff prediction models to deal with the nonlinearity is a challenging task. To overcome this difficulty, this paper proposes a three-stage novel hybrid model, namely, CVS (CEEMDAN-VMD-SVM), by coupling the support vector machine (SVM) with a two-stage signal decomposition methodology, combining complete ensemble empirical decomposition with additive noise (CEEMDAN) and variational mode decomposition (VMD), to obtain inclusive information of the runoff time series. Hydrological runoff data of the Swat River, Pakistan, from 1961 to 2015 were taken for prediction. CEEMDAN decomposes the runoff time series into subcomponents, and VMD performs further decomposition of the high-frequency component obtained after CEEMDAN decomposition to improve the prediction activity. Afterward, the SVM algorithm was applied to the decomposed subcomponents for the prediction purpose. Finally, four statistical indices are utilized to measure the performance of the CVS model compared with other hybrid models including CEEMDAN-VMD-MLP (multilayer perceptron), CEEMDAN-SVM, VMD-SVM, CEEMDAN-MLP, VMD-MLP, SVM, and MLP. The CVS model performs better during the training period by reducing RMSE by 71.28% and 40.06% compared with MLP and CEEDMAD-VMD-SVM models, respectively. However, during the testing period, the error reductions include RMSE by 68.37% and 35.33% compared with MLP and CEEDMAD-VMD-SVM models, respectively. The results highlight that the CVS model outperforms other models in terms of accuracy and error reduction. The research also highlights the superiority of other hybrid models over standalone in predicting the hydrological runoff. Therefore, the proposed hybrid model is applicable for the nonlinear features of runoff time series with feasibility for future planning and management of water resources.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3