Assessment of Hydration Mechanisms, Rheological Behavior, and Sorptivity of Portland Cement Pastes Using Low-Cost Arduino Platform-Based Sensors

Author:

Akash Kalsoom1,Sikandar Muhammad Ali1ORCID,Zamin Bakht1ORCID,Haider Abid2ORCID,Ahmad Mahmood3ORCID,Muayad Sabri Sabri Mohanad4ORCID

Affiliation:

1. Department of Civil Engineering, CECOS University of IT & Emerging Sciences, Peshawar 25000, Pakistan

2. Department of Electrical Engineering CECOS University of IT & Emerging Sciences, Peshawar 25000, Pakistan

3. Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus), Bannu 28100, Pakistan

4. Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia

Abstract

This study assesses hydration, rheology, and sorptivity of cementitious pastes using relatively low-cost Arduino-based platforms with integrated sensors. The prime objective is to develop a correlation between conventional apparatus-based and Arduino-integrated sensor-based assessment. A total of six samples of cementitious paste were prepared at a room temperature of 26°C, with a w/b ratio of 0.3, containing cement, fly ash, and silica fume. First, the conventional apparatus was employed to assess hydration, rheology, and sorptivity of cementitious mixes. Afterward, a platform arranged for data acquisition, comprising Arduino Mega 2560, a temperature sensor, a soil moisture sensor, and a voltage supply, was used to assess the same properties. The recorded temperature and moisture content data were transmitted using the Android application and the Wi-Fi modem router. A 5-minute moisture analysis test was conducted to monitor the rheological behavior of cementitious mixes. The heat of the hydration mechanism was evaluated for 32 hours using a temperature sensor, enabling continuous and real-time monitoring. Moreover, a sorptivity test on cube samples was performed using shielded self-based apparatus in an adiabatic condition, resulting in relatively long-term monitoring. The microscopic details are analyzed by using a scanning electron microscope (SEM) in conjunction with EDX analysis. Thus, the potential application of the inexpensive sensor-based method is verified.

Funder

Federal Target Program

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3