Electrochemical Detection of H2O2 on Graphene Nanoribbons/Cobalt Oxide Nanorods-Modified Electrode

Author:

Murugan Preethika1,Sundramoorthy Ashok K.1ORCID,Nagarajan Ramila D.2,Atchudan Raji3,Shanmugam Rajeshkumar4ORCID,Ganapathy Dhanraj1,Arya Sandeep5,Alothman Asma A.6ORCID,Ouladsmane Mohamed6

Affiliation:

1. Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077 Tamil Nadu, India

2. Department of Chemistry, V. V. Vanniaperumal College for Women, Virudhunagar, 626001 Tamil Nadu, India

3. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

4. Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India

5. Department of Physics, University of Jammu, Jammu, Jammu and Kashmir 180006, India

6. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The most important biological changes which have to be monitored is the mechanism of ageing in the human body where the mitochondria play a major role. Hydrogen peroxide (H2O2) is one of the important markers for the reactive oxygen species (ROS), which denatures the protein and DNA, that was the main contributory factor of ageing. So, it is very important to monitor H2O2 levels in the biological samples. Herein, we reported the preparation of 1D graphene nanoribbon/cobalt oxide nanorod (GNR/Co3O4) based nanocomposite-modified electrochemical sensor for H2O2. Firstly, GNR was synthesized by oxidative unzipping of multiwalled carbon nanotubes (MWCNTs). Secondly, cobalt oxide nanorods (Co3O4) were grown onto GNR by a chemical reduction process. As-prepared nanocomposite was characterized by UV-Visible spectroscopy (UV-Vis) and HR-TEM. Electrochemical properties of GNR/Co3O4-coated electrode were studied by cyclic voltammetry (CV) which showed two redox peaks at 0.93 and 0.88 V in phosphate buffer solution. Next, the electrocatalytic activity of GNR/Co3O4-coated electrode was studied against H2O2 oxidation. The electrochemical studies revealed that GNR/Co3O4-coated electrode exhibited high electrocatalytic activity for H2O2 oxidation at 0.925 V. This sensor showed a linear response for H2O2 oxidation from 10 to 200 μM. The limit of detection (LOD) was calculated to be 1.27 μM. The selectivity of the sensor was also studied with other biomolecules associated in the human body, and the results showed that interference effect is negligible. Thus, the proposed GNR/Co3O4-modified electrode can be used for H2O2 detection with excellent stability and selectivity.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3