Intelligent L2-L∞ Consensus of Multiagent Systems under Switching Topologies via Fuzzy Deep Q Learning

Author:

Cheng Haoyu1ORCID,Xu Linpeng23,Song Ruijia4,Zhu Yue25,Fang Yangwang1

Affiliation:

1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, China

2. School of Marine and Technology, Northwestern Polytechnical University, Xi’an, China

3. China Airborne Missile Academy, Luoyang 471009, China

4. School of Astronautics, Northwestern Polytechnical University, Xi’an, China

5. Beijing Institute of Remote Sensing Equipment, Beijing, China

Abstract

The problem of intelligent L2-L∞ consensus design for leader-followers multiagent systems (MASs) under switching topologies is investigated based on switched control theory and fuzzy deep Q learning. It is supposed that the communication topologies are time-varying, and the model of MASs under switching topologies is constructed based on switched systems. By employing linear transformation, the problem of consensus of MASs is converted into the issue of L2-L∞ control. The consensus protocol is composed of the dynamics-based protocol and learning-based protocol, where the robust control theory and deep Q learning are applied for the two parts to guarantee the prescribed performance and improve the transient performance. The multiple Lyapunov function (MLF) method and mode-dependent average dwell time (MDADT) method are combined to give the scheduling interval, which ensures stability and prescribed attenuation performance. The sufficient existing conditions of consensus protocol are given, and the solutions of the dynamics-based protocol are derived based on linear matrix inequalities (LMIs). Then, the online design of the learning-based protocol is formulated as a Markov decision process, where the fuzzy deep Q learning is utilized to compensate for the uncertainties and achieve optimal performance. The variation of the learning-based protocol is modeled as the external compensation on the dynamics-based protocol. Therefore, the convergence of the proposed protocol can be guaranteed by employing the nonfragile control theory. In the end, a numerical example is given to validate the effectiveness and superiority of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3