Wave Propagation in Periodic Shells with Tapered Wall Thickness and Changing Material Properties

Author:

Toso M.1,Baz A.1

Affiliation:

1. Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA

Abstract

A theoretical method based on the Transfer Matrix Formulation and Wavelet Transforms is developed in order to effectively investigate the influence of periodicity, variable geometry and material properties on the wave propagation characteristics of axis-symmetric shells. Several experiments have been conducted to verify the numerical predictions and to demonstrate that the Wavelet Transform is a very powerful tool to uniquely identify and compare the energy distribution both in the time and frequency domain.Thin shells are modeled as two-dimensional wave-guides, where the propagation of the longitudinal waves is coupled with the flexural (radial) waves. Variations of the wall thickness, medium radius and element length of the shell can effectively filter out/stop undesirable bands of frequencies from the longitudinal and/or the transverse wave characteristics. The principal parameter that influences the width and location of the stop bands is the ratio between the cross sections at the two ends of the shell element. Sophisticated exponential profiles and simpler linear taper are implemented and compared.Functionally graded materials(FGM) are also investigated as an alternative way to influence the parameters of the stop bands. Combinations of the FGM and geometric taper give the flexibility needed for some very demanding applications. Different types of periodic taper configurations have complementary effects on the wave characteristics. Combinations of these complex geometries (bi-periodic tapered cells) are presented and shown to produce the most effectual energy redistribution.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3