Soil Health Management under Hill Agroecosystem of North East India

Author:

Saha R.1,Chaudhary R. S.1,Somasundaram J.1

Affiliation:

1. Indian Institute of Soil Science, Indian Council of Agricultural Research, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh 462 038, India

Abstract

The deterioration of soil quality/health is the combined result of soil fertility, biological degradation (decline of organic matter, biomass C, decrease in activity and diversity of soil fauna), increase in erodibility, acidity, and salinity, and exposure of compact subsoil of poor physicochemical properties. Northeast India is characterized by high soil acidity/Al+3toxicity, heavy soil, and carbon loss, severe water scarcity during most parts of year though it is known as high rainfall area. The extent of soil and nutrient transfer, causing environmental degradation in North eastern India, has been estimated to be about 601 million tones of soil, and 685.8, 99.8, 511.1, 22.6, 14.0, 57.1, and 43.0 thousand tones of N, P, K, Mn, Zn, Ca, and Mg, respectively. Excessive deforestation coupled with shifting cultivation practices have resulted in tremendous soil loss (200 t/ha/yr), poor soil physical health in this region. Studies on soil erodibility characteristics under various land use systems in Northeastern Hill (NEH) Region depicted that shifting cultivation had the highest erosion ratio (12.46) and soil loss (30.2–170.2 t/ha/yr), followed by conventional agriculture system (10.42 and 5.10–68.20 t/ha/yr, resp.). The challenge before us is to maintain equilibrium between resources and their use to have a stable ecosystem. Agroforestry systems like agri-horti-silvi-pastoral system performed better over shifting cultivation in terms of improvement in soil organic carbon; SOC (44.8%), mean weight diameter; MWD (29.4%), dispersion ratio (52.9%), soil loss (99.3%), soil erosion ratio (45.9%), andin-situsoil moisture conservation (20.6%) under the high rainfall, moderate to steep slopes, and shallow soil depth conditions. Multipurpose trees (MPTs) also played an important role on soil rejuvenation.Michelia oblongais reported to be a better choice as bioameliorant for these soils as continuous leaf litter and root exudates improved soil physical behaviour and SOC considerably. Considering the present level of resource degradation, some resource conservation techniques like zero tillage/minimum tillage, hedge crop, mulching, cover crop need due attention for building up of organic matter status for sustaining soil health.

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3