Trajectory Optimization of CAVs in Freeway Work Zone considering Car-Following Behaviors Using Online Multiagent Reinforcement Learning

Author:

Zhu Tong1ORCID,Li Xiaohu2,Fan Wei3,Wang Changshuai4ORCID,Liu Haoxue5,Zhao Runqing6ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an, China

2. China Automotive Technology & Research Center, Beijing, China

3. Beijing Jingdong Century Trading Co., Ltd., Beijing, China

4. School of Transportation, Southeast University, Nanjing, China

5. School of Automobile, Chang’an University, Xi’an, China

6. School of Aviation, UNSW Sydney, High St, Kensington, NSW 2052, Australia

Abstract

Work zone areas are frequent congested sections considered as the freeway bottleneck. Connected and autonomous vehicle (CAV) trajectory optimization can improve the operating efficiency in bottleneck areas by harmonizing vehicles’ manipulations. This study presents a joint trajectory optimization of cooperative lane changing, merging, and car-following actions for CAV control at a local merging point together with upstream points. The multiagent reinforcement learning (MARL) method is applied in this system, with one agent providing a merging advisory service at the merging point and controlling the inner-lane vehicles’ headway for smooth outer-lane vehicle merging, while other agents provide lane-changing advisory services at advance lane-changing points to control how vehicles make lane changes in advance and perform corresponding headway adjustment, similar to and jointly with the merging advisory service. Uniting all agents, the coordination graph (CG) method is applied to seek the global optimum, overcoming the exponential growth problem in MARL. Using MATLAB and the VISSIM COM interface, an online simulation platform is established. The simulation results show that MARL is effective for online computation with in-timing response. More importantly, comparisons of the results obtained in various scenarios demonstrate that the proposed system obtained smoother vehicle trajectories in all controlled sections, rather than only in the merging area, indicating that it can achieve better traffic conditions in freeway work zone areas.

Funder

In-Depth Accident Study for Improved Injury Assessment Tool and its Coupling with Driver Behaviors for Precise Injury Prevention

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3