Driver Attribute Filling for Genes in Interaction Network via Modularity Subspace-Based Concept Learning from Small Samples

Author:

Xie Fei1,Xi Jianing12ORCID,Duan Qun3

Affiliation:

1. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

2. Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an 710072, China

3. School of Computer Science, Xianyang Normal University, Xi’an 712000, China

Abstract

The aberrations of a gene can influence it and the functions of its neighbour genes in gene interaction network, leading to the development of carcinogenesis of normal cells. In consideration of gene interaction network as a complex network, previous studies have made efforts on the driver attribute filling of genes via network properties of nodes and network propagation of mutations. However, there are still obstacles from problems of small size of cancer samples and the existence of drivers without property of network neighbours, limiting the discovery of cancer driver genes. To address these obstacles, we propose an efficient modularity subspace based concept learning model. Our model can overcome the curse of dimensionality due to small samples via dimension reduction in the task of attribute concept learning and explore the features of genes through modularity subspace beyond the network neighbours. The evaluation analysis also demonstrates the superiority of our model in the task of driver attribute filling on two gene interaction networks. Generally, our model shows a promising prospect in the application of interaction network analysis of tumorigenesis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3