Affiliation:
1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
Abstract
The autonomous vehicle consists of perception, decision-making, and control system. The study of path planning method has always been a core and difficult problem, especially in complex environment, due to the effect of dynamic environment, the safety, smoothness, and real-time requirement, and the nonholonomic constraints of vehicle. To address the problem of travelling in complex environments which consists of lots of obstacles, a two-layered path planning model is presented in this paper. This method includes a high-level model that produces a rough path and a low-level model that provides precise navigation. In the high-level model, the improved Bidirectional Rapidly-exploring Random Tree (Bi-RRT) based on the steering constraint is used to generate an obstacle-free path while satisfying the nonholonomic constraints of vehicle. In low-level model, a Vector Field Histogram- (VFH-) guided polynomial planning algorithm in Frenet coordinates is introduced. Based on the result of VFH, the aim point chosen from improved Bi-RRT path is moved to the most suitable location on the basis of evaluation function. By applying quintic polynomial in Frenet coordinates, a real-time local path that is safe and smooth is generated based on the improved Bi-RRT path. To verify the effectiveness of the proposed planning model, the real autonomous vehicle has been placed in several driving scenarios with different amounts of obstacles. The two-layered real-time planning model produces flexible, smooth, and safe paths that enable the vehicle to travel in complex environment.
Funder
Hefei University of Technology
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献