A Novel PSO-Based Optimized Lightweight Convolution Neural Network for Movements Recognizing from Multichannel Surface Electromyogram

Author:

Kan Xiu12ORCID,Yang Dan1,Cao Le1,Shu Huisheng3,Li Yuanyuan1,Yao Wei1,Zhang Xiafeng1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. School of Mathematics, Southeast University, Nanjing 210096, China

3. School of Science, Donghua University, Shanghai 201620, China

Abstract

As the medium of human-computer interaction, it is crucial to correctly and quickly interpret the motion information of surface electromyography (sEMG). Deep learning can recognize a variety of sEMG actions by end-to-end training. However, most of the existing deep learning approaches have complex structures and numerous parameters, which make the network optimization problem difficult to realize. In this paper, a novel PSO-based optimized lightweight convolution neural network (PLCNN) is designed to improve the accuracy and optimize the model with applications in sEMG signal movement recognition. With the purpose of reducing the structural complexity of the deep neural network, the designed convolution neural network model is mainly composed of three convolution layers and two full connection layers. Meanwhile, the particle swarm optimization (PSO) is used to optimize hyperparameters and improve the autoadaptive ability of the designed sEMG pattern recognition model. To further indicate the potential application, three experiments are designed according to the progressive process of body movements with respect to the Ninapro standard data set. Experiment results demonstrate that the proposed PLCNN recognition method is superior to the four other popular classification methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3