Improvement of Hydrophilicity for Polyamide Composite Membrane by Incorporation of Graphene Oxide-Titanium Dioxide Nanoparticles

Author:

Ngo Thu Hong Anh1,Nguyen Chau Thi Minh1,Do Khai Dinh1,Duong Quan Xuan1,Tran Nghia Hieu1,Nguyen Hoan Thi Vuong2,Tran Dung Thi1ORCID

Affiliation:

1. Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam

2. Faculty of Chemistry, Quy Nhon University, Quy Nhon, Vietnam

Abstract

In this work, the polyamide (PA) membrane surface has been modified by coating of nanomaterials including graphene oxide (GO) and titanium dioxide (TiO2) to enhance membrane separation and antifouling properties. The influence of surface modification conditions on membrane characteristics has been investigated and compared with a base membrane. Membrane surface properties were determined through scanning electron microscope (SEM) images and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Membrane separation performance was determined through the possibility for the removal of methylene blue (MB) in water. Membrane antifouling property was evaluated by the maintained flux ratios (%) after 120 minutes of filtration. The experimental results showed that the appearance of hydrophilic groups after coating of GO and TiO2 nanocomposite materials with or without UV irradiation onto membrane surface made an improvement in the separation property of the coated membranes. The membrane flux increased from 28% to 61%; meanwhile, the antifouling property of the coated membranes was improved clearly, especially for UV-irradiated PA/GO-TiO2 membrane.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3