Future Location Prediction for Emergency Vehicles Using Big Data: A Case Study of Healthcare Engineering

Author:

Kamal Muhammad Daud1ORCID,Tahir Ali1ORCID,Kamal Muhammad Babar2ORCID,Naeem M. Asif34ORCID

Affiliation:

1. Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad, Pakistan

2. Department of Computer Science, COMSATS University, Islamabad, Pakistan

3. Department of Computer Science, National University of Computer and Emerging Sciences (NUCES), Islamabad, Pakistan

4. School of Engineering,Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

Abstract

The number of devices equipped with GPS sensors has increased enormously, which generates a massive amount of data. To analyse this huge data for various applications is still challenging. One such application is to predict the future location of an ambulance in the healthcare system based on its previous locations. For example, many smart city applications rely on user movement and location prediction like SnapTrends and Geofeedia. There are many models and algorithms which help predict the future location with high probabilities. However, in terms of efficiency and accuracy, the existing algorithms are still improving. In this study, a novel algorithm, NextSTMove, is proposed according to the available dataset which results in lower latency and higher probability. Apache Spark, a big data platform, was used for reducing the processing time and efficiently managing computing resources. The algorithm achieved 75% to 85% accuracy and in some cases 100% accuracy, where the users do not change their daily routine frequently. After comparing the prediction results of our algorithm, it was experimentally found that it predicts processes up to 300% faster than traditional algorithms. NextSTMove is therefore compared with and without Apache Spark and can help in finding useful knowledge for healthcare medical information systems and other data analytics related solutions especially healthcare engineering.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference36 articles.

1. Mobility, data mining and privacy: geographic knowledge discovery;F. Giannotti,2008

2. Mobility Data

3. Exploiting machine learning techniques for location recognition and prediction with smartphone logs

4. Nextplace: a spatio-temporal prediction framework for pervasive systems;S. Scellato

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3