IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning

Author:

Bibi Nighat1ORCID,Sikandar Misba1ORCID,Ud Din Ikram1ORCID,Almogren Ahmad2ORCID,Ali Sikandar3ORCID

Affiliation:

1. Department of Information Technology, TheUniversity of Haripur, Haripur 22620, Pakistan

2. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia

3. Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum-Beijing, Beijing 102249, China

Abstract

For the last few years, computer-aided diagnosis (CAD) has been increasing rapidly. Numerous machine learning algorithms have been developed to identify different diseases, e.g., leukemia. Leukemia is a white blood cells- (WBC-) related illness affecting the bone marrow and/or blood. A quick, safe, and accurate early-stage diagnosis of leukemia plays a key role in curing and saving patients’ lives. Based on developments, leukemia consists of two primary forms, i.e., acute and chronic leukemia. Each form can be subcategorized as myeloid and lymphoid. There are, therefore, four leukemia subtypes. Various approaches have been developed to identify leukemia with respect to its subtypes. However, in terms of effectiveness, learning process, and performance, these methods require improvements. This study provides an Internet of Medical Things- (IoMT-) based framework to enhance and provide a quick and safe identification of leukemia. In the proposed IoMT system, with the help of cloud computing, clinical gadgets are linked to network resources. The system allows real-time coordination for testing, diagnosis, and treatment of leukemia among patients and healthcare professionals, which may save both time and efforts of patients and clinicians. Moreover, the presented framework is also helpful for resolving the problems of patients with critical condition in pandemics such as COVID-19. The methods used for the identification of leukemia subtypes in the suggested framework are Dense Convolutional Neural Network (DenseNet-121) and Residual Convolutional Neural Network (ResNet-34). Two publicly available datasets for leukemia, i.e., ALL-IDB and ASH image bank, are used in this study. The results demonstrated that the suggested models supersede the other well-known machine learning algorithms used for healthy-versus-leukemia-subtypes identification.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clifford Convolutional Neural Networks for Lymphoblast Image Classification;Advanced Computational Applications of Geometric Algebra;2024

2. Internet of medical things: A systematic review;Neurocomputing;2023-11

3. Unified framework model for detecting and organizing medical cancerous images in IoMT systems;Multimedia Tools and Applications;2023-10-02

4. Big data analytics enabled deep convolutional neural network for the diagnosis of cancer;Knowledge and Information Systems;2023-09-14

5. An Automated Framework for Hematologists Level Leukemia Detection Using Blood Cell Images;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3