Improved Hybrid Model for Predicting Concrete Crack Openings Based on Chaos Theory

Author:

Xu Yao1ORCID,Huang Yaoying2ORCID,Xu Xiaofeng2ORCID,Xiao Fang1ORCID

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. College of Hydraulic and Environmental Engineering, China Three Gorges University, 443002 Yichang, China

Abstract

Conventional statistical models provide inaccurate predictions of concrete crack openings because they do not consider the nonlinear temperature response and the residual characteristics of concrete. To address this problem, this study introduces a nonlinear temperature factor and develops an improved statistical model of crack openings. The chaotic characteristics of residual time series of the improved statistical model are analyzed based on chaos theory and phase-space reconstruction theory. These theories are integrated with back-propagation (BP) artificial neural networks and genetic algorithms (GAs) to establish a GA-BP neural network model for predicting residuals. Finally, a hybrid model is developed for predicting the concrete crack opening behavior. The predictions of the conventional statistical model, the statistical model considering nonlinear temperature component, and the hybrid model are compared using the case study on the crack openings of a regulating sluice. The results show that the proposed hybrid model in this study for predicting concrete crack openings is significantly more accurate than the conventional statistical model and the statistical model considering nonlinear temperature component.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3