Binary Particle Swarm Optimization Intelligent Feature Optimization Algorithm-Based Magnetic Resonance Image in the Diagnosis of Adrenal Tumor

Author:

Xu Jian1ORCID,Tian Fei2ORCID,Wang Lei3ORCID,Miao Zhongchang1ORCID

Affiliation:

1. Department of Radiology, The First People’s Hospital of Lianyungang, Lianyungang 222061, Jiangsu, China

2. Yingbo Super Computing (Nanjing) Technology Co. Ltd., Nanjing 210000, Jiangsu, China

3. Department of Radiation Oncology, The First People’s Hospital of Lianyungang, Lianyungang 222061, Jiangsu, China

Abstract

This research was aimed to explore the application value of magnetic resonance imaging (MRI) based on binary particle swarm optimization algorithm (BPSO) in the diagnosis of adrenal tumors. 120 patients with adrenal tumors admitted to the hospital were selected and randomly divided into the control group (conventional MRI examination) and the observation group (MRI examination based on the BPSO intelligent feature optimization algorithm), with 60 cases in each group. The sensitivity, specificity, accuracy, and Kappa of the diagnostic methods were compared between the two groups. The results showed that the calculation rate of the BPSO algorithm was the best under the same processing effect ( P  < 0.05). Optimization algorithm-based MRI is used in the diagnosis of adrenal tumors, and the results showed that the sensitivity, specificity, accuracy, and Kappa (83.33%, 79.17%, 81.67%, and 0.69) of the observation group were higher than those of the control group (50%, 75%, 58.33%, and 0.45). The similarity of tumor location results in the observation group (89.24%) was significantly higher than that in the control group (65.9%) ( P  < 0.05). In conclusion, compared with SFFS and other algorithms, the BPSO algorithm has more advantages in calculation speed. MRI based on the BPSO intelligent feature optimization algorithm has a good diagnostic effect and higher accuracy in adrenal tumors, showing the good development prospects of computer intelligence technology in the field of medicine.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3