Differentiating Primary Tumors for Brain Metastasis with Integrated Radiomics from Multiple Imaging Modalities

Author:

Cao Guoquan1,Zhang Ji2,Lei Xiyao2,Yu Bing2,Ai Yao2,Zhang Zhenhua1,Xie Congying3ORCID,Jin Xiance24ORCID

Affiliation:

1. Radiology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China

2. Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China

3. Medical and Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China

4. School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China

Abstract

Objectives. To differentiate the primary site of brain metastases (BMs) is of high clinical value for the successful management of patients with BM. The purpose of this study is to investigate a combined radiomics model with computer tomography (CT) and magnetic resonance imaging (MRI) images in differentiating BMs originated from lung and breast cancer. Methods. Pretreatment cerebral contrast enhanced CT and T1-weighted MRI images of 78 patients with 179 BMs from primary lung and breast cancer were retrospectively analyzed. Radiomic features were extracted from contoured BM lesions and selected using the Mann–Whitney U test and the least absolute shrinkage and selection operator (LASSO) logistic regression. Binary logistic regression (BLR) and support vector machine (SVM) models were built and evaluated based on selected radiomic features from CT alone, MRI alone, and combined images to differentiate BMs originated from lung and breast cancer. Results. A total of 10 and 6 optimal radiomic features were screened out of 1288 CT and 1197 MRI features, respectively. The mean area under the curves (AUCs) of the BLR and SVM models using fivefolds cross-validation were 0.703 vs. 0.751, 0.718 vs. 0.754, and 0.781 vs. 0.803 in the training dataset and 0.708 vs. 0.763, 0.715 vs. 0.717, and 0.771 vs. 0.805 in the testing dataset for models with CT alone, MRI alone, and combined CT and MRI radiomic features, respectively. Conclusions. Radiomics model based on combined CT and MRI features is feasible and accurate in the differentiation of the primary site of BMs from lung and breast cancer.

Funder

Wenzhou Municipal Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3