A Belief Two-Level Weighted Clustering Method for Incomplete Pattern Based on Multiview Fusion

Author:

Ma Zong-fang1ORCID,Zhao Hui-xuan1ORCID,Li Lei-hua1ORCID,Song Lin12ORCID

Affiliation:

1. College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710311, China

2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Incomplete pattern clustering is a challenging task because the unknown attributes of the missing data introduce uncertain information that affects the accuracy of the results. In addition, the clustering method based on the single view ignores the complementary information from multiple views. Therefore, a new belief two-level weighted clustering method based on multiview fusion (BTC-MV) is proposed to deal with incomplete patterns. Initially, the BTC-MV method estimates the missing data by an attribute-level weighted imputation method with k-nearest neighbor (KNN) strategy based on multiple views. The unknown attributes are replaced by the average of the KNN. Then, the clustering method based on multiple views is proposed for a complete data set with estimations; the view weights represent the reliability of the evidence from different source spaces. The membership values from multiple views, which indicate the probability of the pattern belonging to different categories, reduce the risk of misclustering. Finally, a view-level weighted fusion strategy based on the belief function theory is proposed to integrate the membership values from different source spaces, which improves the accuracy of the clustering task. To validate the performance of the BTC-MV method, extensive experiments are conducted to compare with classical methods, such as MI-KM, MI-KMVC, KNNI-FCM, and KNNI-MFCM. Results on six UCI data sets show that the error rate of the BTC-MV method is lower than that of the other methods. Therefore, it can be concluded that the BTC-MV method has superior performance in dealing with incomplete patterns.

Funder

Shanxi Provincial Key Research and Development Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3