Multiple Adversarial Domains Adaptation Approach for Mitigating Adversarial Attacks Effects

Author:

Rasheed Bader1ORCID,Khan Adil1ORCID,Ahmad Muhammad2ORCID,Mazzara Manuel3ORCID,Kazmi S. M. Ahsan4ORCID

Affiliation:

1. Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis, Russia

2. Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan

3. Institute of Software Development and Engineering, Innopolis University, Innopolis, Russia

4. Faculty of Computer Science and Creative Technologies, University of the West of England, Bristol, UK

Abstract

Although neural networks are near achieving performance similar to humans in many tasks, they are susceptible to adversarial attacks in the form of a small, intentionally designed perturbation, which could lead to misclassifications. The best defense against these attacks, so far, is adversarial training (AT), which improves a model’s robustness by augmenting the training data with adversarial examples. However, AT usually decreases the model’s accuracy on clean samples and could overfit to a specific attack, inhibiting its ability to generalize to new attacks. In this paper, we investigate the usage of domain adaptation to enhance AT’s performance. We propose a novel multiple adversarial domain adaptation (MADA) method, which looks at this problem as a domain adaptation task to discover robust features. Specifically, we use adversarial learning to learn features that are domain-invariant between multiple adversarial domains and the clean domain. We evaluated MADA on MNIST and CIFAR-10 datasets with multiple adversarial attacks during training and testing. The results of our experiments show that MADA is superior to AT on adversarial samples by about 4% on average and on clean samples by about 1% on average.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3