Affiliation:
1. Department of Mathematics and Computer Science, Tongling University, Tongling 244061, China
Abstract
Traditional intent recognition algorithms of intelligent prosthesis often use deep learning technology. However, deep learning’s high accuracy comes at the expense of high computational and energy consumption requirements. Mobile edge computing is a viable solution to meet the high computation and real-time execution requirements of deep learning algorithm on mobile device. In this paper, we consider the computation offloading problem of multiple heterogeneous edge servers in intelligent prosthesis scenario. Firstly, we present the problem definition and the detail design of MEC-based task offloading model for deep neural network. Then, considering the mobility of amputees, the mobility-aware energy consumption model and latency model are proposed. By deploying the deep learning-based motion intent recognition algorithm on intelligent prosthesis in a real-world MEC environment, the effectiveness of the task offloading and scheduling strategy is demonstrated. The experimental results show that the proposed algorithms can always find the optimal task offloading and scheduling decision.
Funder
Natural Science Foundation of Universities of Anhui Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献