TCMNER and PubMed: A Novel Chinese Character-Level-Based Model and a Dataset for TCM Named Entity Recognition

Author:

Liu Zhi123ORCID,Luo Changyong4ORCID,Zheng Zeyu13,Li Yan5ORCID,Fu Dianzheng13ORCID,Yu Xinzhu6,Zhao Jiawei7

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China

4. Department of Infectious Diseases, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China

5. Education Section, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 101121, China

6. School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China

7. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Intelligent traditional Chinese medicine (TCM) has become a popular research field by means of prospering of deep learning technology. Important achievements have been made in such representative tasks as automatic diagnosis of TCM syndromes and diseases and generation of TCM herbal prescriptions. However, one unavoidable issue that still hinders its progress is the lack of labeled samples, i.e., the TCM medical records. As an efficient tool, the named entity recognition (NER) models trained on various TCM resources can effectively alleviate this problem and continuously increase the labeled TCM samples. In this work, on the basis of in-depth analysis, we argue that the performance of the TCM named entity recognition model can be better by using the character-level representation and tagging and propose a novel word-character integrated self-attention module. With the help of TCM doctors and experts, we define 5 classes of TCM named entities and construct a comprehensive NER dataset containing the standard content of the publications and the clinical medical records. The experimental results on this dataset demonstrate the effectiveness of the proposed module.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3