Liquid Force and Rupture Distance between Two Particles

Author:

Pu Cheng1ORCID,Liu Fengyin1,Wang Shaohan1

Affiliation:

1. Dept. of Geotechnical Engineering, Xi’an University of Technology, Xi’an, China

Abstract

The study of liquid force has a special meaning to industrial manufacturing. By taking the liquid bridges between equal and unequal particles as objects, the liquid force-displacement curves were measured and recorded by using a novel Nano UTM T150 tensile system. The influences of diameter, diameter ratio, liquid volume, and the surface tension on the liquid force-distance curve, the maximum liquid force, and rupture distance were compared and sorted. The results show that the maximum liquid force and rupture distance both increase with the increase in liquid volume, particle diameter, diameter ratio, and surface tension. The diameter plays a decisive role in determining the value of the maximum liquid force compared with surface tension and liquid volume, which only influence the force value in a local range. The rupture distance shows a positive correlation with liquid volume and surface tension and a negative correlation with the diameter or diameter ratio. The maximum liquid force between unequal particles is about half of the sum of the force between the equal spheres of larger and smaller size in that system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3