Identification of Potential Biomarkers in Glioblastoma through Bioinformatic Analysis and Evaluating Their Prognostic Value

Author:

Zhou Yangmei1ORCID,Yang Li1,Zhang Xiaoxi1,Chen Rui1,Chen Xiuqiong1,Tang Wenhua1,Zhang Mengxian1ORCID

Affiliation:

1. Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Glioblastoma is a common malignant tumor in the central nervous system with an extremely poor outcome; understanding the mechanisms of glioblastoma at the molecular level is essential for clinical treatment. In the present study, we used bioinformatics analysis to identify potential biomarkers associated with prognosis in glioblastoma and elucidate the underlying mechanisms. The result revealed that 552 common genes were differentially expressed between glioblastoma and normal tissues based on TCGA, GSE4290, and GSE 50161 datasets. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction (PPI) network were carried out to gain insight into the actions of differentially expressed genes (DEGs). As a result, 20 genes (CALB1, CDC20, CDCA8, CDK1, CEP55, DLGAP5, KIF20A, KIF4A, NDC80, PBK, RRM2, SYN1, SYP, SYT1, TPX2, TTK, VEGFA, BDNF, GNG3, and TOP2A) were found as hub genes via CytoHubba in Cytoscape and functioned mainly by participating in cell cycle and p53 signaling pathway; among them, RRM2 and CEP55 were considered to have relationship with the prognosis of glioblastoma, especially RRM2. High expression of RRM2 was consistent with shorter overall survival time. In conclusion, our study displayed the bioinformatic analysis methods in screening potential oncogenes in glioblastoma and underlying mechanisms. What is more is that we successfully identified RRM2 as a novel biomarker linked with prognosis, which might be expected to be a promising target for the therapy of glioblastoma.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3