Affiliation:
1. State Grid Electric Power Research Institute, Beijing, China
Abstract
Currently, many methods that could estimate the effects of conditions on a given biological target require either strong modelling assumptions or separate screens. Traditionally, many conditions and targets, without doing all possible experiments, could be achieved by driven experimentation or several mathematical methods, especially conversational machine learning methods. However, these methods still could not avoid and replace manual labels completely. This paper presented a meta-active machine learning method to resolve this problem. This project has used nine traditional machine learning methods to compare their accuracy and running time. In addition, this paper analyzes the meta-active machine learning method (MAML) compared with a classical screening method and progressive experiments. The obtained results show that applying this method yields the best experimental results on the current dataset.
Funder
Carnegie Mellon University
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献