Utilization of Nursing Defect Management Evaluation and Deep Learning in Nursing Process Reengineering Optimization

Author:

Liu Yue1ORCID,Liu Huaping2

Affiliation:

1. Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, China

2. School of Nursing, Peking Union Medical College, Beijing, China

Abstract

It was to explore the application of nursing defect management evaluation and deep learning in nursing process reengineering optimization. This study first selects the root cause analysis method to analyse the nursing defect management, then realizes the classification of data features according to the convolution neural network (CNN) in deep learning (DL) and uses the constructed training set and verification set to obtain the required plates and feature extraction. Based on statistical analysis and data mining, this study makes statistical analysis of nursing data from a macroperspective, improves Apriori algorithm through simulation, and analyses nursing data mining from a microperspective. The constructed deep learning model is used, CNN network training is conducted on the selected SVHN dataset, the required data types are classified, the data are analysed by using the improved Apriori algorithm, and nurses’ knowledge of nursing process rules is investigated and analysed. The cognition of nursing staff on process optimization and their participation in training were analyzed, the defects in the nursing process were summarized, and the nursing process reengineering was analyzed. The results show that compared with Apriori algorithm, the running time difference of the improved Apriori algorithm is relatively small. With the increase of data recording times, the line trend of the improved algorithm gradually eases, the advantages gradually appear, and the efficiency of data processing is more obvious. The results showed that after the optimization of nursing process, the effect of long-term specialized nursing was significantly higher than that of long-term nursing. Health education was improved by 7.57%, clinical nursing was improved by 6.55%, ward management was improved by 9.85%, and service humanization was improved by 8.97%. In summary, the reoptimization of nursing process is conducive to reduce the defects in nursing. In the data analysis and rule generation based on deep learning network, the reoptimization of nursing process can provide reference for decision-making departments to improve long-term nursing, improve the quality and work efficiency of clinical nurses, and is worthy of clinical promotion.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3