Affiliation:
1. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2. Northeast Branch of State Grid Corporation of China, Shenyang 110180, China
Abstract
The demand for improving productivity in manufacturing systems makes the industrial Internet of things (IIoT) an important research area spawned by the Internet of things (IoT). In IIoT systems, there is an increasing demand for different types of industrial equipment to exchange stream data with different delays. Communications between massive heterogeneous industrial devices and clouds will cause high latency and require high network bandwidth. The introduction of edge computing in the IIoT can address unacceptable processing latency and reduce the heavy link burden. However, the limited resources in edge computing servers are one of the difficulties in formulating communication scheduling and resource allocation strategies. In this article, we use deep reinforcement learning (DRL) to solve the scheduling problem in edge computing to improve the quality of services provided to users in IIoT applications. First, we propose a hierarchical scheduling model considering the central-edge computing heterogeneous architecture. Then, according to the model characteristics, a deep intelligent scheduling algorithm (DISA) based on a double deep
network (DDQN) framework is proposed to make scheduling decisions for communication. We compare DISA with other baseline solutions using various performance metrics. Simulation results show that the proposed algorithm is more effective than other baseline algorithms.
Funder
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献