Asymptotically Effective Method to Explore Euler Path in a Graph

Author:

Fahad Muhammad1ORCID,Ali Sikandar2ORCID,Khan Mukhtaj2ORCID,Husnain Mujtaba3ORCID,Shafi Zeeshan3ORCID,Samad Ali3ORCID

Affiliation:

1. Govt.College Civil Lines, Multan 66000, Pakistan

2. Department of Information Technology, The University of Haripur, Haripur 22621, Khyber Pakhtunkhwa, Pakistan

3. Faculty of Computing, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

Abstract

Euler path is one of the most interesting and widely discussed topics in graph theory. An Euler path (or Euler trail) is a path that visits every edge of a graph exactly once. Similarly, an Euler circuit (or Euler cycle) is an Euler trail that starts and ends on the same node of a graph. A graph having Euler path is called Euler graph. While tracing Euler graph, one may halt at arbitrary nodes while some of its edges left unvisited. In this paper, we have proposed some precautionary steps that should be considered in exploring a deadlock-free Euler path, i.e., without being halted at any node. Simulation results show that our proposed approach improves the process of exploring the Euler path in an undirected connected graph without interruption. Furthermore, our proposed algorithm is complete for all types of undirected Eulerian graphs. The paper concludes with the proofs of the correctness of proposed algorithm and its computation complexity.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Droplet Manipulation Platform based on Digital Microfluidic Chip;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

2. Retracted: Asymptotically Effective Method to Explore Euler Path in a Graph;Mathematical Problems in Engineering;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3