QoS Prediction for Neighbor Selection via Deep Transfer Collaborative Filtering in Video Streaming P2P Networks

Author:

Ma Wenming1ORCID,Zhang Qian1,Mu Chunxiao1,Zhang Meng2

Affiliation:

1. School of Computer and Control Engineering, Yantai University, Yantai 264005, China

2. China National Nuclear Corporation, Beijing 100045, China

Abstract

To expand the server capacity and reduce the bandwidth, P2P technologies are widely used in video streaming systems in recent years. Each client in the P2P streaming network should select a group of neighbors by evaluating the QoS of the other nodes. Unfortunately, the size of video streaming P2P network is usually very large, and evaluating the QoS of all the other nodes is resource-consuming. An attractive way is that we can predict the QoS of a node by taking advantage of the past usage experiences of a small number of the other clients who have evaluated this node. Therefore, collaborative filtering (CF) methods could be used for QoS evaluation to select neighbors. However, we might use different QoS properties for different video streaming policies. If a new video steaming policy needs to evaluate a new QoS property, but the historical experiences include very few evaluation data for this QoS property, CF methods would incur severe overfitting issues, and the clients then might get unsatisfied recommendation results. In this paper, we proposed a novel neural collaborative filtering method based on transfer learning, which can evaluate the QoS with few historical data by evaluating the other different QoS properties with rich historical data. We conduct our experiments on a large real-world dataset, the QoS values of which are obtained from 339 clients evaluating on the other 5825 clients. The comprehensive experimental studies show that our approach offers higher prediction accuracy than the traditional collaborative filtering approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3