Affiliation:
1. School of Mathematics, Liaoning Normal University, Dalian 116029, China
Abstract
The convex nonnegative matrix factorization (CNMF) is a variation of nonnegative matrix factorization (NMF) in which each cluster is expressed by a linear combination of the data points and each data point is represented by a linear combination of the cluster centers. When there exists nonlinearity in the manifold structure, both NMF and CNMF are incapable of characterizing the geometric structure of the data. This paper introduces a neighborhood preserving convex nonnegative matrix factorization (NPCNMF), which imposes an additional constraint on CNMF that each data point can be represented as a linear combination of its neighbors. Thus our method is able to reap the benefits of both nonnegative data factorization and the purpose of manifold structure. An efficient multiplicative updating procedure is produced, and its convergence is guaranteed theoretically. The feasibility and effectiveness of NPCNMF are verified on several standard data sets with promising results.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献