Affiliation:
1. Business, College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, China
Abstract
Combining the three-term conjugate gradient method of Yuan and Zhang and the acceleration step length of Andrei with the hyperplane projection method of Solodov and Svaiter, we propose an accelerated conjugate gradient algorithm for solving nonlinear monotone equations in this paper. The presented algorithm has the following properties: (i) All search directions generated by the algorithm satisfy the sufficient descent and trust region properties independent of the line search technique. (ii) A derivative-free search technique is proposed along the direction to obtain the step length αk. (iii) If ϕk=−αkhk−hwkTdk>0, then an acceleration scheme is used to modify the step length in a multiplicative manner and create a point. (iv) If the point satisfies the given condition, then it is the next point; otherwise, the hyperplane projection technique is used to obtain the next point. (v) The global convergence of the proposed algorithm is established under some suitable conditions. Numerical comparisons with other conjugate gradient algorithms show that the accelerated computing scheme is more competitive. In addition, the presented algorithm can also be applied to image restoration.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献