Synthetic Epileptic Brain Activities with TripleGAN

Author:

Xu Meiyan12ORCID,Jie Jiao1ORCID,Zhou Wangliang1ORCID,Zhou Hefang1ORCID,Jin Shunshan3ORCID

Affiliation:

1. Minnan Normal University, China

2. OYMotion Technologies Co., Ltd., China

3. Beidahuang Industry Group General Hospital, China

Abstract

Epilepsy is a chronic noninfectious disease caused by sudden abnormal discharge of brain neurons, which leads to intermittent brain dysfunction. It is also one of the most common neurological diseases in the world. The automatic detection of epilepsy based on electroencephalogram through machine learning, correlation analysis, and temporal-frequency analysis plays an important role in epilepsy early warning and automatic recognition. In this study, we propose a method to realize EEG epilepsy recognition by means of triple genetic antagonism network (GAN). TripleGAN is used for EEG temporal domain, frequency domain, and temporal-frequency domain, respectively. The experiment was conducted through CHB-MIT datasets, which operated at the latest level in the same industry in the world. In the CHB-MIT dataset, the classification accuracy, sensitivity, and specificity exceeded 1.19%, 1.36%, and 0.27%, respectively. The crossobject ratio exceeded 0.53%, 2.2%, and 0.37%, respectively. It shows that the established deep learning model of TripleGAN has a good effect on EEG epilepsy classification through simulation and classification optimization of real signals.

Funder

Minnan Normal University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3