Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR)

Author:

Hoang Nhat-Duc12ORCID,Tran Xuan-Linh12ORCID,Huynh Thanh-Canh12ORCID

Affiliation:

1. Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam

2. Faculty of Civil Engineering, Duy Tan University, Da Nang, 550000, Vietnam

Abstract

Pile foundations are widely used for high-rise structures constructed in soft ground. The bearing capacity of pile is a crucial parameter required during the design and construction phase of pile foundation engineering projects. In practice, accurate predictions of pile bearing capacity are challenging due to a complex interplay of various geotechnical engineering factors including pile characteristics and ground conditions. This study proposes a data-driven model for coping with the problem of interest that hybridizes machine learning and metaheuristic approaches. Least squares support vector regression (LSSVR) is used for analyzing a dataset containing historical records of pile tests. Based on such datasets, LSSVR is capable of generalizing a multivariate function that estimates values of pile bearing capacity based on a set of variables describing pile characteristics and ground conditions. Moreover, opposition-based differential flower pollination (ODFP) metaheuristic is proposed to optimize the LSSVR learning process. Experimental results supported by the statistical test showed that the proposed ODFP-optimized LSSVR can achieve a good predictive performance in terms of root mean square error, mean absolute percentage error mean absolute error, and coefficient of determination. These results confirm that the ODFP-optimized LSSVR can be a potential alternative to assist civil engineers in the task of pile bearing capacity estimation.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3