Effects of Different Carbon Sources on the Growth and Production of Rotifer (Brachionus plicatilis) in a Zero-Water Exchange Biofloc Culture System

Author:

Hosain Md. Eilious12ORCID,Amin S. M. Nurul13ORCID,Kamarudin Mohd Salleh14ORCID,Arshad Aziz14ORCID,Karim Murni14ORCID,Naser Md. Niamul2,Fotedar Ravi3

Affiliation:

1. Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

2. Department of Zoology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh

3. Curtin Aquatic Research Laboratories, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, Perth 6102, Western Australia, Australia

4. International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Batu 7, Jalan Kemang 6, Teluk Kemang, Si Rusa, Port Dickson 71050, Negeri Sembilan, Malaysia

Abstract

Brachionus plicatilis is considered an indispensable first live feed for many fish and crustacean larvae; the demand for the species has increased globally. The mass production of the rotifer involves quality microalga and a standard diet; this culture is expensive and needs a skilled workforce. The hatchery’s incubators are likely to have limited resources leading to sudden rotifer culture crashes that ultimately disrupt the larvae production. More recently, improved sustainable rotifer production has been achieved through biofloc technology (BFT) that uses fish wastes and wheat flour. However, various carbon sources, which are typically used in BFT-based systems need to be explored and tested for their efficacies. A 4-day rotifer, B. plicatilis batch culture, was conducted in BFT systems by adding four carbon sources: molasses, rice bran, maize starch, and palm kernel expeller versus a control (without any carbon source). Fifteen 125 L containing polyethylene tanks with a water volume of 100 L were used for this experiment, and each tank was stocked with 5 × 106 rotifer (50 rotifers mL−1). Different carbon sources in triplicates including a control were tested as treatments. The carbon : nitrogen ratio in the study was maintained at 10 : 1. The rotifers were fed with Baker’s yeast at 1.0, 0.50, and 0.25 g million-−1 rotifers for the first, second, and third day and continued after that. Total ammonia–nitrogen (TAN) and pH values were found to be significantly (p<0.05) lower in all four treatments of the BFT system than in the control. Significantly higher (p<0.05) settleable solids were obtained in the molasses and rice bran treatments than those in the maize starch or palm kernel expeller. Likewise, the significantly (p<0.05) higher density of B. plicatilis and their specific growth rate were obtained in the molasses and rice bran-adding treatments, followed by those in palm kernel expeller, maize starch, and the control. This study indicates that molasses and rice bran as carbon sources when added to BFT-based systems enhance B. plicatilis production.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3