Wideband 4×4 Nolen Matrix with 360° Continuously Tuned Differential Phase and Low In-Band Phase Deviation Error

Author:

Yu Da1,Liu Hongmei1ORCID,Zhang Yan1,Wang Zhongbao1ORCID,Fang Shaojun1ORCID

Affiliation:

1. School of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning 116026, China

Abstract

In the paper, a wideband tunable 4×4 Nolen matrix is proposed. By using the presented topology of the Nolen matrix, tunable output port phase differences can be realized by inserting one type of tunable phase shifters (T-PS). Besides, the in-band phase deviation error is minimized by adding compensation phase shifters (C-PSs) to the output ports of the Nolen matrix. Analytical design methods based on signal flow graphs and complex exponential signal are given to obtain the rigorous relationships of the coupling and phase shifts in the Nolen matrix. Besides, a detailed method for output ports phase slope compensation is provided. For validation, a prototype centered at 5.8 GHz is designed and fabricated. Measurement results agree well with the simulated ones. By using only one voltage to control the phase shifts of the T-PS in a 90° range for each input excitation of the Nolen matrix, a full 360° range of the progressive phase difference is realized by switching four input ports. The measured fractional bandwidth under 10 dB return loss and isolation is larger than 24.5% with the inband±1.5 dB amplitude imbalance and ±15° phase deviation error for ports 1-4 excitations. Besides, for a more strict criterion of ±1 dB amplitude imbalance and 10° phase deviation error, the measured bandwidths are larger than 15% for all port excitations.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3