Affiliation:
1. School of Transportation Science and Engineering, Beihang University, No. 37 Xueyuan Rd., Haidian District, Beijing 100191, China
Abstract
Due to the aero-engines in a high temperature, pressure, and spool speed environment, the concurrent faults in actuator/sensor combined with degradation of the aero-engine could arise the problem of closed-loop instability during the flight. For this purpose, an improved hybrid fault-tolerant control (FTC) technique has been studied in this paper to deal with simultaneous failure of actuators and sensors associated with health parameters of the typical components’ degradation in aero-engines. The improved hybrid FTC structure combined with the nonlinear thermodynamic component-level (NCL) model-based estimation method merges fault estimation of actuators/sensors and typical components’ degradation estimation process into the FTC process. A robust
state feedback controller under the disturbance of simultaneous actuator and sensor faults is designed in the proposed method, together with the switching algorithm serving for the fault estimation and improved hybrid FTC channels. In order to show the feasibility of the proposed method, several semiphysical experiments are engaged to illustrate that the improved hybrid FTC structure can save the tolerant-control time and improve performance of the control system.
Funder
National Science and Technology Major Project